

Available online at www.sciencedirect.com

Energy Procedia 63 (2014) 1321 – 1328

GHGT-12

Energy

Procedia

Systems Analysis of Ionic Liquids for Post-combustion CO₂ Capture at Coal-fired Power Plants

Haibo Zhai* and Edward S. Rubin

Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

The main objective of this study is to investigate the feasibility and costs of ionic liquid (IL)-based CO₂ capture systems at pulverized coal-fired (PC) power plants. The IL selected for this assessment is trihexyl-(tetradecyl)phosphonium 2-cyanopyrrolide ([P66614][2-CNpyr]), achieving a 1:1 and reversible chemical reaction between [2-CNpyr]⁻ and CO₂. A multi-stage equilibrium-based modeling framework is established to simulate the adiabatic absorption process, whereas a single-stage flash drum in equilibrium is employed for the stripping process. The performance model is linked to an engineering-economic model that estimates the capital cost, annual operating and maintenance (O&M) costs, and total levelized annual cost. The technical and cost models are applied to estimate the cost of CO₂ captured by an IL-based CCS system. The preliminary results show that for 90% CO₂ captured, the capture cost would be higher than the U.S. Department of Energy's target at \$40 per metric ton of CO₂ captured for new generation technologies, mainly due to a large capital cost. However, current process designs are not yet optimized. Based on the cost of CO₂ captured, the most cost-effective capture cost is found to be at a removal efficiency of about 85% for CO₂.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Peer-review under responsibility of the Organizing Committee of GHGT-12

Keywords: Systems analysis; post-combustion CO2 capture; ionic liquids

1. Introduction and Research Objective

Ionic liquids (ILs) are among the new materials being developed for carbon dioxide (CO₂) capture because of their many favorable properties: nonvolatile, high thermal stability, high CO₂ solubility and selectivity, and endless

^{*} Corresponding author. Tel.: +1-412-268-1088; fax: +1-412-268-3757. *E-mail address*: hbzhai@cmu.edu